已知函数f(x)=x+2x,g(x)=x+lnx,h(x)=x--1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是 ( )
A.x1<x2<x3 B.x2<x1<x3
C.x1<x3<x2 D.x3<x2<x1
已知函数f(x)=x+2x,g(x)=x+lnx,h(x)=x--1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是 ( )
A.x1<x2<x3 B.x2<x1<x3
C.x1<x3<x2 D.x3<x2<x1
A
解析 令函数f(x)=x+2x=0,因为2x恒大于零,所以要使得x+2x=0,x必须小于零,即x1小于零;令g(x)=x+lnx=0,要使得lnx有意义,则x必须大于零,又x+lnx=0,所以lnx<0,解得0<x<1,即0<x2<1;令h(x)=x--1=0,得x=
+1>1,即x3>1,从而可知x1<x2<x3.