如图,△ABO的顶点A在函数y=(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为3,则k的值为( )
A.9 B.12 C.15 D.18
如图,△ABO的顶点A在函数y=(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为3,则k的值为( )
A.9 B.12 C.15 D.18
D
【分析】易证△ANQ∽△AMP∽△AOB,由相似三角形的性质:面积比等于相似比的平方可求出△ANQ的面积,进而可求出△AOB的面积,则k的值也可求出.
解:
∵NQ∥MP∥OB,
∴△ANQ∽△AMP∽△AOB,
∵M、N是OA的三等分点,
∴=
,
=
,
∴=
,
∵四边形MNQP的面积为3,
∴=
,
∴S△ANQ=1,
∵=(
)2=
,
∴S△AOB=9,
∴k=2S△AOB=18,
故选:D.