如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB 与点D,将△ACD沿点D落在点E处,AE交⊙O于点F ,连接OC、FC.
(1)求证:CE是⊙O的切线。
(2)若FC∥AB,求证:四边形 AOCF是菱形。
如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB 与点D,将△ACD沿点D落在点E处,AE交⊙O于点F ,连接OC、FC.
(1)求证:CE是⊙O的切线。
(2)若FC∥AB,求证:四边形 AOCF是菱形。
解: (1)由翻折可知
∠FAC=∠OAC, ∠E=∠ADC=90°
∵OA=OC,
∴∠OAC=∠OCA
∴∠FAC=∠OCA,
∴OC∥AE
∴∠OCE=90°,即OC⊥OE
∴CE是⊙O的切线
(2)∵FC∥AB,OC∥AF,
∴四边形AOCF是平行四边形
∵OA=OC,
∴□AOCF是菱形