已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给下以下结论:
①2a﹣b=0;
②9a+3b+c<0;
③关于x的一元二次方程ax2+bx+c+3=0有两个相等实数根;
④8a+c<0.
其中正确的个数是( )
A.2 B.3 C.4 D.5
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给下以下结论:
①2a﹣b=0;
②9a+3b+c<0;
③关于x的一元二次方程ax2+bx+c+3=0有两个相等实数根;
④8a+c<0.
其中正确的个数是( )
A.2 B.3 C.4 D.5
A【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.
【分析】①根据抛物线的对称轴为x=﹣=1,可得出2a﹣b=4a≠0,结论①不正确;②根据二次函数的对称性,可得出当x=3时,y=ax2+bx+c=9a+3b+c<0,结论②正确;③将二次y=ax2+bx+c图象沿y轴正方向平移3个单位长度,可得出二次函数y=ax2+bx+c+3的图象与x轴只有一个交点,即关于x的一元二次方程ax2+bx+c+3=0有两个相等实数根,结论③正确;④将x=﹣2代入二次函数解析式中,可得出y=4a﹣2b+c>0,再结合b=﹣2a即可得出8a+c>0,结论④不正确.综上即可得出结论.
【解答】解:①∵抛物线的对称轴为x=﹣=1,
∴b=﹣2a,
∴2a﹣b=4a≠0,结论①不正确;
②∵抛物线的对称轴为x=1,当x=﹣1时,y=ax2+bx+c<0,
∴当x=3时,y=ax2+bx+c=9a+3b+c<0,结论②正确;
③∵二次函数y=ax2+bx+c的图象的顶点坐标为(1,﹣3),
∴将二次函数y=ax2+bx+c图象沿y轴正方向平移3个单位长度得到y=ax2+bx+c+3,且二次函数y=ax2+bx+c+3的图象与x轴只有一个交点,
∴关于x的一元二次方程ax2+bx+c+3=0有两个相等实数根,结论③正确;
④当x=﹣2时,y=ax2+bx+c=4a﹣2b+c>0,
∵b=﹣2a,
∴4a﹣2×(﹣2a)+c=8a+c>0,结论④不正确.
综上所述:正确的结论有②③.
故选A.