根据下列表格的对应值,判断ax2+bx+c=0 (a≠0,a,b,c为常数)的一个解x的取值范围是______
x | 3.23 | 3.24 | 3.25 | 3.26 |
ax2+bx+c | ﹣0.06 | ﹣0.02 | 0.03 | 0.09 |
根据下列表格的对应值,判断ax2+bx+c=0 (a≠0,a,b,c为常数)的一个解x的取值范围是______
x | 3.23 | 3.24 | 3.25 | 3.26 |
ax2+bx+c | ﹣0.06 | ﹣0.02 | 0.03 | 0.09 |
3.24<x<3.25 【考点】图象法求一元二次方程的近似根.
【分析】根据上面的表格,可得二次函数y=ax2+bx+c的图象与x轴的交点坐标即为方程ax2+bx+c=0的解,当x=3.24时,y=﹣0.02;当x=3.25时,y=0.03;则二次函数y=ax2+bx+c的图象与x轴的交点的横坐标应在3.24和3.25之间.
【解答】解:∵当x=3.24时,y=﹣0.02;
当x=3.25时,y=0.03;
∴方程ax2+bx+c=0的一个解x的范围是:3.24<x<3.25.
故答案为:3.24<x<3.25.