综合与实践 折纸是同学们喜欢的手工活动之一,通过折纸我们既可
综合与实践
折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.
折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②

(一)填一填,做一做:
(1)图②中,∠CMD= .
线段NF=
(2)图②中,试判断△AND的形状,并给出证明.
剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.
(二)填一填

(3)图③中阴影部分的周长为 .
(4)图③中,若∠A′GN=80°,则∠A′HD= °.
(5)图③中的相似三角形(包括全等三角形)共有 对;
(6)如图④点A′落在边ND上,若
=
,则
= (用含m,n的代数式表示).
【解答】解:(1)由折叠的性质得,四边形CDEF是矩形,
∴EF=CD,∠DEF=90°,DE=AE=
AD,
∵将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,
∴DN=CD=2DE,MN=CM,
∴∠EDN=60°,
∴∠CDM=∠NDM=15°,EN=
DN=2
,
∴∠CMD=75°,NF=EF﹣EN=4﹣2
;
故答案为:75°,4﹣2
;
(2)△AND是等边三角形,理由如下:
在△AEN与△DEN中,
,
∴△AEN≌△DEN(SAS),
∴AN=DN,
∵∠EDN=60°,
∴△AND是等边三角形;
(3)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,
∴A′G=AG,A′H=AH,
∴图③中阴影部分的周长=△ADN的周长=3×4=12;
故答案为:12;
(4)∵将图②中的△AND沿直线GH折叠,使点A落在点A′处,
∴∠AGH=∠A′GH,∠AHG=∠A′HG,
∵∠A′GN=80°,
∴∠AGH=50°,
∴∠AHG=∠A′HG=70°,
∴∠A′HD=180°﹣70°﹣70°=40°;
故答案为:40;
(5)如图③,
∵∠A=∠N=∠D=∠A′=60°,
∠NMG=∠A′MN,∠A′NM=∠DNH,
∴△NGM∽△A′NM∽△DNH,
∵△AGH≌△A′GH
∴图③中的相似三角形(包括全等三角形)共有4对,
故答案为:4;
(6)设
=
=a,则A'N=am,A'D=an,
∵∠N=∠D=∠A=∠A′=60°,
∴∠NA′G+∠A′GN=∠NA′G+∠DA′H=120°,
∴∠A′GN=∠DA′H,
∴△A′GH∽△HA′D,
∴
=
=
,
设A'G=AG=x,A'H=AH=y,则GN=4﹣x,DH=4﹣y,
∴
=
=
,
解得:x=
y,
∴
=
=
=
;
故答案为:
.
