本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
已知以原点为中心的椭圆的一条准线方程为
,离心率
,
是椭圆上的动点.
(Ⅰ)若的坐标分别是
,求
的最大值;
(Ⅱ)如题(20)图,点的坐标为
,
是圆
上的点,
是点
在
轴上的射影,点
满足条件:
,
.求线段
的中点
的轨迹方程;
本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
已知以原点为中心的椭圆的一条准线方程为
,离心率
,
是椭圆上的动点.
(Ⅰ)若的坐标分别是
,求
的最大值;
(Ⅱ)如题(20)图,点的坐标为
,
是圆
上的点,
是点
在
轴上的射影,点
满足条件:
,
.求线段
的中点
的轨迹方程;
解析:(Ⅰ)由题设条件知焦点在y轴上,故设椭圆方程为(a >b> 0 ).
设,由准线方程
得.由
得
,解得 a = 2 ,c =
,从而 b = 1,椭圆方程为
.
又易知C,D两点是椭圆的焦点,所以,
从而,当且仅当
,即点M的坐标为
时上式取等号,
的最大值为4 .
(II)如图(20)图,设
.因为
,故
①
因为
所以 . ②
记P点的坐标为,因为P是BQ的中点
所以
由因为 ,结合①,②得
故动点P的估计方程为