设Sn是数列{an}(n∈N*)的前n项和,a1=1,且Sn2=n2an+Sn﹣12,an≠0,n≥2,n∈N*.
(1)证明:an+2﹣an=2(n∈N*);
(2)若an=log3bn,求数列{an•bn}的前n项和Tn.
设Sn是数列{an}(n∈N*)的前n项和,a1=1,且Sn2=n2an+Sn﹣12,an≠0,n≥2,n∈N*.
(1)证明:an+2﹣an=2(n∈N*);
(2)若an=log3bn,求数列{an•bn}的前n项和Tn.
解:(1)证明:∵Sn2=n2an+Sn﹣12,
∴n2an=(Sn+Sn﹣1)(Sn﹣Sn﹣1),
即n2an=(Sn+Sn﹣1)an,又∵an≠0,
故Sn+Sn﹣1=n2,
故Sn+1+Sn=(n+1)2,
故an+1+an=2n+1,
故an+2+an+1=2n+3,
故an+2﹣an=2(n∈N*);
(2)由题意可解得,a1=1,a2=2,
故an=n,
故log3bn=n,
故bn=3n,
故Tn=1•3+2•32+3•33+…+n•3n,
3Tn=1•32+2•33+3•34+…+n•3n+1,
故2Tn=n•3n+1﹣(3+32+33+…+3n)
=n•3n+1﹣![]()
=n•3n+1
﹣
•3n+1+
,
故Tn=
.