某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).
(1)求y与x之间的函数关系式,自变量x的取值范围;
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).
(1)求y与x之间的函数关系式,自变量x的取值范围;
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
【考点】二次函数的应用.
【分析】(1)根据数量乘以单位的利润,等于总利润,可得答案;
(2)根据二次函数的性质,可的大啊俺.
【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,
则y=﹣2x2+120x﹣1600. 由题意,有,解得20≤x≤40.
故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40;
(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,
∴当x=30时,y有最大值200.
故当销售价定为30元/千克时,每天可获最大销售利润200元;