思路解析:证明整除性问题的关键是“凑项”采用增项、减项、拆项和因式分解等手段,凑出n=k时的情形,从而利用归纳假设使问题获证.
证明:(1)当n=1时,命题显然成立.
(2)设n=k时,an+1+(a+1)2n-1能被a2+a+1整除,则
当n=k+1时,ak+2+(a+1)2k+1=a·ak+1+(a+1)2(a+1)2k-1
=a[ak+1+(a+1)2k-1]+(a+1)2(a+1)2k-1-a(a+1)2k-1
=a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,上式中的两项都能被a2+a+1整除,故n=k+1时命题成立.