在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.
(Ⅰ)如图①,当BE=![]()
时,计算AE+AF的值等于______
(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)______.


在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.
(Ⅰ)如图①,当BE=![]()
时,计算AE+AF的值等于______
(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)______.


【解答】解:(1)根据勾股定理可得:DB=![]()
,
因为BE=DF=![]()
,
所以可得AF=![]()
=2.5,
根据勾股定理可得:AE=![]()
,所以AE+AF=![]()
,
故答案为:![]()
;
(2)如图,


首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH=![]()
=5,结合相似三角形选出格点K,根据![]()
,得BP=![]()
BH=![]()
=4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到![]()
,得DG=![]()
DM=![]()
×5=3,易证△DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.
故答案为:取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.