如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.
(1)求该二次函数的表达式;
(2)求tan∠ABC.
如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.
(1)求该二次函数的表达式;
(2)求tan∠ABC.
【分析】(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,将A(1,0)代入解析式来求a的值.
(2)由锐角三角函数定义解答.
【解答】解:(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,(a≠0).
把A(1,0)代入,得0=a(1﹣4)2﹣3,
解得a=.
故该二次函数解析式为y=(x﹣4)2﹣3;
(2)令x=0,则y=(0﹣4)2﹣3=
.则OC=
.
因为二次函数图象的顶点坐标为(4,﹣3),A(1,0),则点B与点A关系直线x=4对称,
所以B(7,0).
所以OB=7.
所以tan∠ABC==
=
,即tan∠ABC=
.
【点评】考查了抛物线与x轴的交点,二次函数的性质,待定系数法确定函数关系式以及解直角三角形.解题时,充分利用了二次函数图象的对称性质.